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SU_RY

A method has been developed for calculating flutter characteristics

of finite-span swept or unswept wings at subsonic and supersonic speeds.

The method is basically a Rayleigh type analysis and is illustrated with

uncoupled vibration modes although coupled modes can be used. The aero-

dynamic loadlngs are based on distributions of section lift-curve slope

and local aerodynamic center calculated from three-dlmensional steady-

flow theory. These distributions are used in conjunction with the

"effective" angle-of-attack distribution resulting from each of the

assumed vibration modes in order to obtain values of section lift and

pitching moment. Circulation functions modified on the basis of loadings

for two-dimensional airfoils oscillating in a compressible flow are

employed to account for the effects of oscillatory motion on the magni-

tudes and phase angles of the llft and moment vectors.

Flutter characteristics have been calculated by this method for

12 wings of varying sweep angle, aspect ratio, taper ratio, and center-

of-gravlty position at Mach numbers from 0 to as high as 1.79. Compari-

sons of the results with experimental flutter data indicate that this

meZhod gives generally good flutter results for a broad range of wings.

INTRODUCTION

Much of the difficulty encountered in attempting to predict flutter

characteristics for finite-span swept and unswept wings at subsonic and

supersonic speeds results from inadequate representation of the distri-

butions of oscillating aerodynamic loads on such wings. For both sub-

sonic and supersonic speeds a number of methods exist for evaluating

three-dimensional oscillating loads (refs. I to 21, for example). These

methods involve varying degrees of rigor, but all are characterized by
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the relatively extensive amount of computation required. In all of these
procedures it is necessary to recalculate the loading with each change of
reduced frequency. This fact further increases the amount of computation
required because in flutter prediction the reduced frequency at flutter
is not usually found directly. Becausethe calculations are complex and
lengthy and becausemanyof the procedures have not been proved in gen-
eral application, the use of these methods in flutter prediction has been
limited.

A procedure commonlyused in the solution of practical flutter prob-
lems involving finite wings is a modal-type analysis similar to that
employed by Barmby_Cunningham,and Garrick for swept wings (ref. 22)
and by Smilg and Wassermanfor unswept wings (ref. 23). These methods,
as presented in references 22 and 23, employ two-dimensional incompres-
sible aerodynamic forces and momentsand thus do not take into account
the aerodynamic effects of finite span and compressibility.

The present report presents an approximate method of flutter cal-
culation based on a simplified representation of the three-dimensional
aerodynamic loading which is shownto be applicable to a wide variety
of wing plan forms at both subsonic and supersonic speeds. The present
method is also based on a modal analysis_ but the aerodynamic effects
of finite span, taper, and compressibility are accounted for by utilizing
modified aerodynamic loadings based on spanwise distributions of section
lift-curve slope and local aerodynamic center calculated from well-known
subsonic (ref. 24) or supersonic (refs. 25 and 26) three-dlmensional
steady-flow theory for flat, rigid wings. The distributions of section
lift and pitching momenton oscillating flexible wings are obtained by
employing these distributions of lift-curve slope and aerodynamic center
for flat rigid wings in conjunction with the "effective" angle-of-attack
distribution resulting from oscillation of the wing in each of the assumed
vibration modes. The effect of oscillatory motion on the magnitudes and
phase angles of the llft and momentvectors is represented approximately
by modifying the familiar circulation functions of Theodorsen by utilizing
aerodyn_nic flutter coefficients given by Jordan (ref. 27) for two-
dimensional airfoils oscillating in subsonic or supersonic flow. A
detailed description of the procedure for making flutter calculations is
given in the appendixes.

By representing the oscillating aerodynamic loads in this manner
the necessity of recalculating the load distributions for each value of
reduced frequency is avoided, since Only the modified circulation func-
tions vary with frequency, and these in turn are assumednot to vary
along the span. The bending and twisting deformation of individual wing
sections is taken into account only in terms of the "effective" angle of
attack and is assumednot to affect distributions of lift-curve slope
and aerodynamic center. This procedure is equivalent to neglecting the
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influence of deformation on the llft-produclng capacity of a given wing

section.

Flutter characteristics have been calculated by the method developed

herein (using three vibration modes) for wings with sweep angles from 0°

to 52.5 ° , aspect ratios from 2.4 to 7.4, taper ratios of 0.6 and 1.O, and

center-of-gravlty positions between 34 percent chord and 59 percent chord.

The results are compared herein with experimental data obtained in the

Langley 26-inch transonic blowdown tunnel (refs. 28 to 31) and in the

Langley 9- by 12-inch supersonic blowdown tunnel (ref. 32).

SYMBOLS

a

ac

acn

b

br

B

aspect ratio of full wing including fuselage intercept

aspect ratio of wing considering side of fuselage as a reflec-

tion plane (twice the panel aspect ratio)

nondimenslonal distance from mldchord to elastic axis measured

perpendicular to elastic axis, positive rearward, fraction

of semichord b

nondlmensional distance from leading edge to local aerodynamic

center (for steady flow) measured streamwise, fraction of

streamwise chord, Cn_/CI_

nondimenslonal distance from midchord to local aerodynamic

center (for steady flow) measured perpendicular to elastic

axis, positive rearward, fraction of semichord b

semlchord of wing measured perpendicular to elastic axis

semichord of wing measured perpendicular to elastic axis at

spanwise reference station _ = 0.75

span of wing panel considering side of fuselage as a reflec-

tion plane

ratio of local semlchord b to reference semichord br meas-

ured perpendicular to elastic axis, b/b r

complex circulation function, F + iG

local lift-curve slope for a streamwise section in steady flow
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Cm_

Cp

F

fh

fe

G

g

i

knr

M

m

P

Q

local lift-curve slope for a section perpendicular to the

elastic axis in steady flow

derivative with respect to angle of attack of local pitching-

moment coefficient measured about the leading edge of a
streamwise section

local lifting-pressure coefficient

circulation function which modifies in-phase load components

deflection function of wing in bending mode

deflection function of wing in torsion mode

circulation function which introduces out-of-phase load
components

structural damping coefficient for wing (Subscript _ denotes

torsional mode; subscript h denotes bending mode.)

local vertical translational displacement of wing at elastic
axis

mass moment of inertia of unit length of wing about elastic
axis

reduced frequency based on the spanwise reference station

(_ = 0.75) and on velocity component normal to elastic axis,

br_/Vn

length of exposed wing panel measured along elastic axis

Mach number

oscillatory moment about elastic axis per unit length of wing,
positive leading edge up

mass of wing per unit length measured along elastic axis

oscillatory lift per unit length of wing along the elastic

axis, positive downward

dog.wash expression defined by equation (5b)
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rc_

t

V

VR

v

x

T

x

x_

!

CL

A

h

hp

4

nondimensional radius of gyration of wing about elastic axis,

/1 /mb2

time

flutter speed, measured parallel to free stream (experimental

values or values calculated by the method of this report)

calculated reference flutter speed obtained by using CZ_,n = 2_

and acn _ 1
2

free- stream velocity

streamwise coordinate measured from leading edge of wing root

nondimensional coordinate from midchord measured perpendicular

to elastic axis, positive rearward, fraction of semichord b

nondimensional distance from elastic axis to local center of

gravity measured perpendicular to elastic axis, positive

rearward, fraction of semichord b

distance along elastic axis measured from wing root, Z_

angle of attack

M_ - i for M> i; _ - M2 for M < i

wing section mass-density ratio, _pb2/m

sweep angle; positive for sweepback

taper ratio of full wing including fuselage intercept

taper ratio of exposed wing panel

nondimensional coordinate (either spanwise or along elastic

axis) measured from wing root, fraction of exposed panel

span s or fraction of wing length

local torsional displacement of wing measured about elastic

axis

p air density
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local bending slope of elastic axis, _h/_y'

T local rate of change of twist, Be/By'

circular frequency of vibration

a_ circular frequency of first uncoupled torsional vibration mode

of wing measured about elastic axis

_h circular frequency of uncoupled bending vibration mode of wing
(subscripts 1 and 2 denote first and second bending modes)

nondimensional streamwise coordinate measured from leading edge

of wing root, fraction of exposed panel span s

Subscripts :

c/4 quantities associated with the wing quarter-chord

ea quantities associated with the wing elastic axis

C circulation functions obtained from the oscillatory aerodynamic

coefficients given in reference 27 for two-dimensional com-

pressible flow

quantities associated with the wing leading edge

quantities associated with the Mach lines originating from wing

root or tip

quantities associated with wing sections normal to the elastic
axis

circulation functions obtained by Theodorsen in reference 33

for two-dimensional incompressible flow

quantities associated with the wing trailing edge

Dots over symbols denote derivatives with respect to time.
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DESCRIPTION OF THE METHOD

General

The procedure for flutter calculation used in this report is bas-

ically a Rayleigh, or modal-type, analysis and is illustrated herein with

uncoupled vibration modes although coupled modes can be used. (The use

of uncoupled modes in flutter calculations is discussed in detail in

refs. 22 and 34.) The flutter modes of the wings studied in this inves-

tigation are represented by the first and second bending and the first

torsional vibration modes of uniform cantilever beams. All deformations

are considered to be made up of vertical bending of an approximately

straight elastic axis and rotation about that axis. The wing root is

treated as though it were clamped along a line normal to the elastic axis

and passing through the intersection of the elastic axis and the root

chord. The dynamical equations involved in this type of analysis are

obtained from Lagrange's equations of motion in which the vibration modes

are used as generalized coordinates. These dynamical equations repre-

senting the balance between elastic, inertial, and aerodynamic loads are

derived in appendix A and are obtained (for the simple case of one bending

mode and one torsion mode) in the form

L, + ,
_ _- x,_fhf e dy 8_ - _Obr 2a_2/01 d,y' =

(I)

and

(2)

where h and e are as defined in equations (A8) and (Ag). These same

equations in a different form were used in reference 22. The values of

all geometrical, structural, and aerodynamic quantities to be used in

these equations are those values associated with sections normal to the

elastic axis.

The innovations of the present method consist of alterations in the

expressions for section lift P, pitching moment M_, and complex circu-

lation function C = F + iG in order to approximate the aerodynamic

effects of finite span, taper, and compressibility. The section lift P

and pitching moment M_ are expressed in terms of arbitrary section lift-

curve slope and aerodynamic center which are assumed to vary along the

- !
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span of the wing. For any particular value of free-stream Mach number,

the spanwise distributions of lift-curve slope and aerodynamic center

are calculated from well-known steady-state aerodynamic theory for flat

rigid wings. The spanwise distributions of the lift and moment on the

deforming wing are then found by using the aforementioned values of

static section lift-curve slope and aerodynamic center in conjunction

with the "effective" angle-of-attack distribution resulting from oscil-

lation of the wing in each of the assumed vibration modes.1 The values

of lift and moment thus obtained account approximately for finite span,

taper, compressibility, and deformation shape of the wing. However, it

is also necessary to take into account the effect of oscillatory motion

on the magnitudes and phase angles of the lift and moment vectors. In

the present method this is done approximately by utilizing circulation

functions (analogous to the familiar F and G functions of Theodorsen

(refs. 33 and 35)) which are modified on the basis of aerodynamic flutter

coefficients given by Jordan (ref. 27) for two-dimensional airfoils oscil-

lating in subsonic or supersonic flow. In the application of the circu-

lation functions thus obtained, the Mach number normal to the leading

edge is employed.

Formulating the aerodynamic forces and moments in this manner implies

the following assumptions:

(i) The bending and twisting deformation of individual wing sections

is accounted for in terms of the "effective" angle of attack only. The

effect of relative deformation on section lift-curve slope and aerodynamic

center can be neglected. Camber deformation of sections normal to the

elastic axis is not considered.

(2) The effect of oscillatory motion on the magnitude and phase

angles of the section lift and moment vectors is the same for each wing

section and may be represented by modified circulation functions associ-

ated with the Mach number component normal to the leading edge.

In view of the use of static lift-curve slopes and aerodynamic cen-

ters, application of this method at high values of reduced frequency

would be open to question. At low to moderate reduced frequencies, how-

ever, the approximation should be reasonable.

In the remaining sections of this description of the method are

discussed the alteration of section lift P and pitching moment M_

by the introduction of static three-dimensional section lift-curve slopes

iThe "effective" angle of attack is the downwash resulting from the

motion divided by the component of free-stream velocity normal to the

elastic axis.
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and aerodynamic centers, the calculation of these static aerodynamic

parameters, and the evaluation of the complex circulation function C

by utilizing two-dlmensional subsonic or supersonic oscillatlng-airfoil

theory.

A detailed description of the flutter calculation procedure is given

in appendix B, and expressions for the elements of the final flutter

determinant are given in appendix A.

Expressions for Section Lift and Pitching Moment

In formulating the expressions for section lift and pitching moment

the following basic assumption is made: The flow over wing sections nor-

mal to the elastic axis consists of a quasi-two-dimensional noncirculatory

flow plus a circulatory flow in which the circulation is fixed by the

component of free-stream velocity normal to the elastic axis in conjunc-

tion with downwash distributions along chord lines normal to the elastic

axis (rather than by the free-stream velocity and downwash distributions

along streamwise chord lines). In contrast to the method of reference 22

the present method does not consider the circulatory flow to be two-

dimensional and incompressible in nature. It should be observed that the

concepts of circulatory and noncirculatory flow components as developed

in references 22 and 33 appear to have little meaning for wings with

supersonic edges. Nevertheless, for convenience, these concepts have

been utilized in the present method for wings with supersonic edges since

it is believed that inclusion of the appropriate section lift-curve slopes

and aerodynamic centers represents the principal aerodynamic effects on

the calculated flutter speed of wings with supersonic edges.

The section lift P and pitching moment M_ which are used in the

present analysis may be obtained from similar expressions in reference 22

by introducing variable section lift-curve slope CZ_,n and variable

aerodynamic center ac n. The procedure for making this generalization

is as follows:

First, the expressions for P and M_ used in reference 22 are

written in the form

2_pvnbCQ

Noncirculatory

Circulatory
(3)
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and

M_ =-_Db4(--_ + a21<e + Vn_" tan Aeal + _Pvnb2(h + Vn(_ tan Aeal +

Noncirculatory

I Circulatory

(_)

where Q is the downwash expression defined by equation (ba). These

equations are, of course, based on the assumption that flow with small
disturbances exists.

Circulatory components.- Only the circulatory components of these

expressions are changed. In the circulatory components of equations (3)

and (4) the value 2_ for section lift-curve slope is replaced by the

variable C_,n, and the quarter-chord aerodynamic-center position

acn = - _I replaced by the variable ac n. The downwash expression Q
is

must also be altered to include the effects of variable section lift-curve

slope C_,n and aerodynamic center acn.

The treatments of the circulatory components of lift and pitching

moment in references 22 and 35 are based on classical two-dimensional

incompressible thin-airfoll theory, which indicates a section lift-curve

slope of 2_ and an aerodynamic center located at the quarter-chord posi-

tion. The circulation strength is therefore related to the downwash veloc-

ity at the three-quarter-chord position. This downwash as given in ref-
erence 22 is

Q = h + Vn8 + Vna tan Aea + b(l- a>(8 + Vnr tan Aea 1 (ba)

and the distance between the bound vortex (quarter-chord) and the point

at which the downwash boundary condition is applied (three-quarter-chord)

is b. For arbitrary CZ_,n, this distance becomes CZ_'n b. (See ref. 24
2_

for a detailed discussion of the application of the downwash boundary con-

dition when CZ_,n is other than 2_.) Then, if acn (location of bound
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vortex) is also arbitrary, the downwashcondition is applied at the posi-\

b(_'n + acn) measuredpositive rearward from the midchord. (Seetlon
/

fig. 1.) Then, in the expression for Q, the distance from the elastic
I.

of application of the downwash condition b(_ - a) isaxis to the point
\- I

J_

replaced in the present analysis by b(C_ 'n + acn - a). Then for the
%-

present method,

Q = h + vne + Vnq tan Aea + bIC_'n + acn - al(e + VnT tan Aea )
(Sb)

Noncirculatory components.- The noncirculatory flow components con-

tribute to the llft and moment only a virtual mass effect which is com-

paratively very small except at high frequencies. Since, as mentioned

previously, the present method should probably be applied only to cases

involving low to moderate reduced frequencies, it appears that the non-

circulatory flow terms will constitute only a small fraction of the over-

all section lift and moment. Now_ the noncirculatory components of sec-

tion lift P and moment M_ which are used in references 22 and 33 and

shown in equations (3) and (4) of the present report are derived from

the velocity potentials for unsteady two-dlmensional incompressible flow

about a flat plate. The virtual mass effects resulting from these non-

circulatory flows are dependent only upon the velocity perpendicular to

the wing surface and do not depend on the stream velocity as such. For

low to moderate frequencies, the velocity perpendicular to the wing sur-

face will be small compared to free-stream velocity. Therefore, for wings

with all edges subsonic, any effects of compressibility on the magnitudes

of the noncirculatory flow terms should be small, and the consequent

effects on the section lift and moment should be of second order. It is

concluded that, for wings with all edges subsonic, use of the noncircu-

latory components of lift and moment in essentially the two-dimensional

incompressible form should result in negligible error in the calculated

flutter speed.

In view of the relatively small magnitude of the noncirculatory flow

components, the two-dimensional incompressible form is also used as a

first approximation to virtual mass effects for wings with supersonic

edges as well as for wings with all edges subsonic. At low reduced fre-

quencies, the noncirculatory terms might even be completely neglected

without introducing major errors into the calculated flutter results.
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The section lift and pitching moment used throughout the present

investigation are made up of circulatory components generalized as pre-

viously described and noncirculatory components used in the unaltered

two-dimensional incompressible forms shown in equations (3) and (2).

The resulting expressions are for the section lift

P = -_pb2[ _+r Vn@ + Vn_ tan Aea - ba(8 + VnT tan Aea)] -

Cim, nPVnbCQ

Noncir culatory

Circulatory
(6)

and for the pitching moment about the elastic axis

M_ =-_pb4(8+ a21(8 + VnT tan Aea_ + _pb2Vn(h + Vng tan Aea) +

I Noncirculatory

I Circulatory
(7)

where the downwash expression Q is that defined in equation (_b).

Note that in accordance with the discussion in reference 22 the terms of

equations (3), (4), (6), and (7) associated with the variation of the

velocity potential with lengthwise distance y' are omitted.

Substituting expressions (6) and (7) into the dynamical equations (1)

and (2) and using equation (Sb), together with the assumption of harmonic

motion, yield two homogeneous flutter equations in the two unknowns h

and e. The flutter determinant resulting from these flutter equations,

expressions for the elements of the determinant, and the method used in

solving the determinant for the flutter condition are given in appendix A.

The remainder of the description of the method is concerned with the evalu-

ation of the static aerodynamic parameters C_,n and acn and the cir-

culation functions F and G which appear in the expressions for the
determinant elements.

Static Aerodynamic Parameters

All calculations of static aerodynamic parameters are made by con-

sidering the wing to be rigid and flat.
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For M = 0 (reference).- The reference flutter speed VR is found

1

for each wing by using C_,n = 2_ and acn = - __ at M = O. With

these values the flutter equations (A12) and (A13) reduce to those given

in reference 22.

For 0 _ M < i.- At subsonic (and incompressible) speeds the span-

wise distribution of C_e is found by the liftlng-line method of ref-

erence 24. In reference 24 charts of the necessary influence coefficients,

which facilitate rapid calculation of the loading, are presented. Although

this method involves the application of boundary conditions and the eval-

uation of load intensity at only seven spanwise stations, the resulting

accuracy is considered adequate for present purposes, and the method is

used because of its simplicity. Simple sweep theory is used to relate

C_e

C_e,n ..... For all subsonic speeds theC_ to Thus, C_,n cos Aea
! _\

center is taken at the quarter-chord position (ac n = - _).aerodynamic

k

However, at subsonic speeds higher than those calculated herein it may

become necessary to take aerodynamic-center changes into account. Details

of the loading calculations are given in appendix B.

For M > 1.- At supersonic speeds when the wing leading edge is

swept behind the leading-edge root Mach line (subsonic leading edge), the

equations of reference 25 are used to calculate the static distributions

of Cle, n and acn. The method of reference 25 is based on a superposi-

tion of conical flows, and relatively simple formulas are given for cal-

culating the loading. When the leading edge lles ahead of the leading-

edge root Mach llne (supersonic leading edge), the equations of

reference 26 are used. Reference 26 is also based on conical-flow

concepts. These equations for lifting pressure have been used in

integrals which yield section-lift and pitchlng-moment coefficients Cle

and Cm_ (and hence ac). The resulting expressions and details of

their application are given in appendix B. The equations for C_e and

Cnk_ given in appendix B make it unnecessary to refer to references 25

and 26 for present purposes.
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Circulation Functions

The complex circulation function

C = C(M, knr) = F(M, knr) + iG(M, knr)

appearing in equations (6) and (7) and in the expressions of appendix A,

modifies the otherwise-static circulatory components of lift and pitching
moment to account for the effect of oscillation. The F function modi-

fies the load component which is in phase with angle of attack, and the

G function introduces out-of-phase load components. Values of the F

and G functions used in reference 22 were those developed by Theodorsen

(ref. 33) for two-dlmensional incompressible flow about an oscillating

airfoil. In the present investigation these values are again used for

M = O, but the functions must be modified to account for compressibility

effects at M > O. The modification used herein is based on loading

functions for two-dimensional subsonic or supersonic flow about an oscil-

lating airfoil as given by Jordan in reference 27. The relations between

these loading functions and the F and G circulation functions are

derived in appendix B. Although the flutter calculation is based on a

consideration of sections normal to the elastic axis, the governing Mach
number for the determination of the circulation functions is taken to be

that normal to the leading edge. This choice of governing Mach number

arises from the fact that the nature of the flow over a section of wing

is influenced by whether the leading edge is subsonic or supersonic.

Although it would seem straightforward to use the appropriate FC

and G C functions directly in the flutter calculations, this procedure

gives poor results in comparison with experiment. (See figs. 3 and 9,
!

for example. ) The large phase angles (tan -1 _C_ of the complex circula-

\ Fc/
tion functions associated with two-dimensional compressible flow were

found to be inappropriate for three-dimensional wings. It was antici-
pated that if phase angles remained moderately small (i.e., if G remained

fairly small relative to F) l, the calculated flutter speed would be rel-

atively insensitive to changes in the magnitude of G. That is, if G

is not large relative to F, the actual value of G is unimportant. The

1The assumption of small phase angles implies an upper bound on the

values of reduced frequency knr for which the present method can be

used. However, as previously mentioned the use of statically based load

distributions also restricts the method to moderately small frequency

values, so the present assumption imposes no further limitation.
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predominant effect on the loading of changing Machnumberwould then lie
in changing the magnitude of the in-phase componentassociated with F.
The form of the complex function C which is used in the present calcu-
lations is therefore taken to be

FI\

This function contains an in-phase componentwhich is the sameas that
derived from reference 27 for two-dimensional compressible flow, but the
associated phase angle is independent of Machnumber. Hence, the phase
angle is the sameas that given by Theodorsen in reference 33.

In order to investigate the validity of this reasoning somecalcu-
lations were also madeby using

C = C(MLE,knr) = FC + iO

Also, to investigate the sensitivity of the flutter calculations to dif-

ferent forms of circulation-function representation, some calculations

at the higher Mach numbers were made by using

FI2 + GI2

This function has zero phase angle, and its amplitude is the ratio of

the magnitudes of the resultant vectors for compressible and incompres-

sible flow.

Further details of the circulation-function calculation are given

in appendix B. The method for solving the final flutter determinant is

given in appendix A.
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RESULTSANDDISCUSSION

Presentation of Results

Flutter characteristics have been calculated by the present method
(using three vibration modes) for wings with sweepangles from 0° to
52.5° , aspect ratios from 2.4 to 7.4, taper ratios of 0.6 and 1.O, and
center-of-gravity positions between34 percent chord and 59 percent chord.
The plan forms of these wings are shownin figure 2. The calculated
results are comparedwith experimental data obtained in the Langley
26-inch transonic blowdowntunnel (refs. 28 to 31) and in the Langley
9- by 12-inch supersonic blowdowntunnel (ref. 32).

Unless otherwise indicated the subsequent discussion deals entirely
with calculated results obtained by using the complex circulation function

FI\

Wing designation.- The three-digit system used to identify the wings

with taper ratio of 0.6 is the same as that used in reference 30. The

first digit in this system is the aspect ratio of the full wing to the

nearest integer. The second and third digits give the quarter-chord

sweep angle to the nearest degree. For example, wing 445 has an aspect

ratio of 4, a sweep angle of 45 °, and a full-wing taper ratio of 0.6.

Since some of the wings discussed in this paper have identical plan forms

but different center-of-gravity positions (ref. 31), a single letter is

appended to the plan-form designation to signify a shifted center of

gravity. For example, wing 445 has a center of gravity at approximately

46 percent chord, whereas the center of gravity of wing 445F is at about

34 percent chord, and that of wing 445R is at about 58 percent chord.

Wing 400 has a center of gravity at approximately 45 percent chord, but

wing 400R has a center of gravity at about 59 percent chord.

For the wings with taper ratio of 1.0, the same system is used,

except that a fourth digit i is added to distinguish the taper ratio.

For example, wing 4451 has a full-wing aspect ratio of 4, a sweep angle

of 45°, and a taper ratio of 1.0.

Flutter characteristics.- Calculated flutter characteristics V/VR,

_/a_, and knr and the associated values of VR, M, a_, and D are

given in Zable I for several wings (see fig. 2) at several Mach numbers.

The calculated values of V/VR and _/c0_ are compared with experimental
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data in figures 3 to 14 and 15 to 26, respectively. The experimental

flutter points shown were obtained at various values of density p;

whereas, for a particular wing, all of the points calculated by the pres-
ent method were obtained at a constant value of p which represented

approximately an average of the experimental densities. For each experi-

mental point, however, the normalizing VR was calculated by using the

appropriate experimental density. On the basis of previous experience,

it is believed that normalizing the experimental flutter speeds in this

manner essentially accounts for density effects so that the resulting

(V/VR)ex p is considered to be nearly independent of p, at least over

the range of density variation which occurs herein.

The static distributions of C_,n and acn used in obtaining the

calculated flutter characteristics are shown in figures 27 to 35. For

all of the flutter calculations presented in this report, the flutter

modes of the wings were represented by a combination of the first torsion

mode shape and first and second bending mode shapes of a uniform cantilever

beam.

The reference flutter speeds VR used in references 28, 30, and 32

for wings 430, 245, 400, 4001, and 7001 were calculated by employing

only two degrees of freedom (first bending and first torsion). Since

three-degree-of-freedom calculations yield values of VR which are

slightly lower than the two-degree-of-freedom values, the experimental

V/VR values for these wings have been multiplied by the ratio

VR for two degrees of freedom
so that both calculated and experimental

VR for three degrees of freedom

flutter-speed ratios as presented herein are normalized by VR for three

degrees of freedom.

Flutter Speeds

As shown in figures 3 to 14, the flutter speeds calculated by the

present method for all wings demonstrate a characteristic decrease as
Mach number increases from 0 to near 1.O. This decrease is the result

of increasing C_ which is caused by compressibility at high subsonic

speeds. It should be noted that at M = 0 the differences between the

V/V R values shown and the value 1.O result solely from the effect of

finite aspect ratio. As Mach number increases above 1.O, decreasing

C_ and rearward shifting ac cause a rapid rise in the flutter speed.

In the immediate vicinity of M = 1.O the flutter-speed curves are shown

dashed to indicate that this region is inaccessible to the present

_*_½_ _ .....
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calculations. This inaccessibility results from the breakdown of both

subsonic and supersonic three-dimensional steady-flow wing theories near

M = 1.O. It should be noted that the minimum value of V/VR will gen-

erally occur within this inaccessible region, and, hence, l.-J-I can-

mln

not usually be calculated by use of theoretical static aerodynamic coef-

ficients obtained from the wing theories employed herein. It is possible,

however, to fair a reasonable curve through the neighborhood of M = 1.0

by making use of the adjacent subsonic and supersonic calculated points.

The extent shown for the dashed portion of the curves should not, of

course, be interpreted as representing the limits of the inaccessible

region. No attempt has been made to evaluate these limits, and the range

shown in the figures is only illustrative.

For all of the swept wings the calculated flutter-speed curves of

figures 3 to 14 are in very good agreement with the experimental data at

all Mach numbers. In general, the calculated curves actually lie within

the scatter of the experimental data. For wing 445 (fig. 3) there are

no experimental data in the range 1.4 < M < 1.75. However, the leveling-

off tendency demonstrated by the calculated flutter-speed curve in this

Mach number range is in qualitative agreement with data for other similar

wings.

Comparison of the flutter-speed curves for wings 445, 445F, and 445R

(figs. 3, 4, and 5) shows that the rather large differences between the

center-of-gravity positions for these wings cause only very slight dif-

ferences in V/V R at subsonic speeds. At supersonic Mach numbers, how-

ever, the data show that the characteristic rise of flutter speed with

increasing Mach number becomes more rapid as the center of gravity is

moved progressively forward. This behavior is also predicted by the
calculated curves.

The close agreement between calculated and experimental flutter

speeds for wing 245 (fig. 6) is rather surprising in view of the small

aspect ratio of this wing. In general, the use of a strip-theory type

of analysis and uncoupled vibration modes for a wing of such small aspect

ratio (panel aspect ratio = 0.91) would be open to question. The agree-

ment in the present case may, therefore, be fortuitous.

For most of the wings shown in this report no tip correction was

applied to ac n to account for the 'forward shift of aerodynamic center

within the tip Mach cone. (See discussion of tip corrections in appen-

dix B.) For wing 430, however, the tip Mach cone covered so large a

portion of the wing that it was considered necessary to apply a tip cor-

rection to acn. (See figs. 28(d) and (e).) At M = 1.19470, this cor-

rection appears to be rather large. However, a preliminary calculation
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at this Mach number without the correction to acn yielded a value of

flutter speed only 13 percent higher than that shown. It appears, there-

fore, that unless the tip Mach cone covers a large portion of the wing,

the application of a tip correction to ac n is not necessary.

For the low-aspect-ratio unswept wings (figs. i0, ii, and 13) agree-

ment between calculated and experimental flutter speeds is not as good

as for the swept wings. For wing 400 (fig. i0) the agreement is fair up

to about M = 1.0, but the calculated values overpredict the flutter

speed by as much as 2! times at M = _. The magnitude of this error is
2

believed to be related to the proximity of the local aerodynamic centers

to the local centers of gravity and the fact that linear theory predicts

an aerodynamic center that is too far rearward. This hypothesis is sup-

ported by the results obtained for wing 400 with its center of gravity
shifted from about 45 percent chord to about 59 percent chord (wing 400R).

Figure ii shows that for wing 400R at supersonic speeds the calculated

curve overpredicts the mean experimental values by only about 13 percent.

The erroneous results obtained for wing 400 should probably not be inter-

preted as indicating a limitation on the present method of flutter calcu-

lation. Rather, these errors appear to arise from the well-known limita-

tions on the use of linearized flow theory to calculate load distributions

on wings of finite thickness. Wing 400 at supersonic speeds seems to con-

stitute a very sensitive case in which a small inaccuracy in the location

of the aerodynamic center leads to large errors in calculated flutter

speed. In the case of wing 4001 (fig. 15) the calculated and experimental

values are in very good agreement up to about M = 1.0. At supersonic

speeds, where the local aerodynamic centers are shifted rearward toward

the local centers of gravity, the theory again overpredicts the experi-

mental values, this time by up to 37 percent. This deviation is not

surprising in view of the fact that wing 4001 is not greatly different

from wing 400.

The calculated flutter speeds for the high-aspect-ratio unswept wing

(wing 7001, fig. 14) are in good agreement with experiment throughout the

Mach number range. The improved agreement for this wing as compared with

that for the low-aspect-ratlo unswept wings may be caused to some extent

by the decreased thickness of wing 7001 near the tip. Wing 7001 was

tapered in thickness from 4 percent at the root to 2 percent at the tip,

whereas wings 400, 40OR, and 4001 were of constant 4-percent thickness.

The flutter-speed curves shown in figures 3 to 14 were calculated

by using the complex circulation function

c=
FI\ -
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as described previously. The few points obtained by using the function

C = FC + iO

differ from the curves by no more than 7 percent. This close agreement

supports the previously stated contention that if phase angles (tan-1 !)
\

are moderately small, 1 the calculated flutter speed will be relatively

insensitive to changes in G. Figures 3 to 14 also show that flutter

speeds at the higher Mach numbers calculated by using the function

C = _FC2 + GC2

_i 2 + GI 2

differ from the curves by no more than i0 or ii percent. Although, as

expected, the points calculated in this manner do not agree with experi-

ment as well as the curves <obtained with C = FC(FT +iGI)),FI\± the small

differences between them do point out the relative insensitivity of the

calculated flutter speed to the form of circulation-function representa-
tion used.

In making the flutter calculations presented herein it was observed

that for all but the highest subsonic speeds the circulation functions FC

and G C are not greatly different from the functions FI and G I of

Theodorsen. At M = 0.75 for the wings shown in figure 2, the use of

= F I + iG I instead of C = _C(F I + iGi) changes the flutter speed by
C

FI\

only about 4 percent or less. It would seem, therefore, that the modified

circulation functions need be employed only at high subsonic and super-
sonic speeds.

lit should be clearly understood that the quantity tan -I _ is the
F

phase angle of the complex circulation function C = F + iG and should

not be confused with any phase angles associated with the wing

displacements.
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Flutter Frequencies

  o ate c veCo** uttor*ro uo o,  
(figs. 15 to 26) indicate that for all of the swept wings the frequency

is well predicted at subsonic speeds. At supersonic speeds the usual

rise in frequency is predicted by the theory, but it occurs at Mach num-

bers higher than those indicated by the test results. In general, the

agreement between calculated and experimental flutter frequencies is not

as good as the agreement between calculated and experimental flutter speeds.

The frequencies calculated for the swept wings by using

c : ;c2 + °c2(i+ io)

FI 2 + GI 2

are all excessively high, except at Mach numbers where the leading edge

is supersonic or nearly so. At these higher Mach numbers the frequencies

thus obtained are generally in better agreement with the experimental

values than are the values obtained with C = _C(FT + iGi_.j
FI_

For unswept wing 4001 (fig. 25), the number of calculated points is

not sufficient to indicate whether the pronounced dip in frequency, which

occurs at high subsonic Mach numbers, is predicted by the theory. At low

supersonic speeds the calculated curves (with C = FC(FT + iGl)) over-FI_

predict flutter frequencies by a substantial amount. However, the dif-

ferences between theory and experiment become much smaller at the higher

supersonic speeds, except in the case of wing 400 (fig. 22). The fre-

quencies as well as the flutter speeds of wing 400 are overpredicted by

a factor of nearly 2!. As in the case of the swept wings the frequencies
2

for the unswept wings obtained by using

C

are all excessively high.

Fc2+ OC2(I+ i0)

FI 2 + GI 2
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Limitations of the Method

Although the limitations of this method have not been fully evalu-
ated, someof the more important restrictions may be qualitatively
discussed.

Frequency range.- As stated previously, the use of spanwise load

distributions based on lift-curve slopes and aerodynamic centers calcu-

lated from steady-flow wing theory imposes an upper bound on reduced-

frequency values for which the method can reasonably be used. No attempt

has been made to determine the upper limits of reduced frequency for which

the method is usable, but good results for values of knr up to 0.2 are

shown herein.

Mach number range.- The nature of the equations for the circulation
functions (eqs. (B38) and (B39) or (B40) and (B41)) shows that at MLE = l,

the circulation functions become F C = GC = 0. This implies that a small

range of Mach number in the immediate vicinity of MLE = i is inaccessible

to the present method. This is not a serious limitation, however, because

a curve of flutter speed or frequency can be reasonably faired through

this inaccessible region by making use of adjacent points. For the wings

calculated in this report, there appear to be no sudden or extreme fluc-

tuations of flutter speed or frequency in this region.

The limitations on Mach number range appertaining to the particular

steady-flow wing theories used are, of course, carried over to the flutter

calculation. In general, this carried-over restriction will exclude free-

stream Mach numbers in the immediate vicinity of 1.0, as was mentioned

previously.

Flutter modes.- The use of uncoupled modes in combination with a

strip theory involving strips normal to the elastic axis is not an

essential requirement of the present method of flutter calculation. An

analogous calculation procedure would result from the use of coupled

modes together with streamwise strips. Flutter modes which involve

significant amounts of camber deformation obviously cannot be treated by

the method in its present form. As mentioned previously, all flutter

calculations presented herein were made by using the mode shapes of a

uniform cantilever beam. Since the results of the flutter analysis are

not very sensitive to slight changes in mode shape, such a procedure is

reasonable as long as aspect ratio and especially taper ratio are not

too small.

Plan-form range.- The strip-theory concepts which are employed in

the present method also impose plan-form limitations. When aspect ratio

or taper ratio or both become so small that the variables (notably herein,

aerodynamic loading and circulation funnt_n_ _sociated with a given
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section of the wing cannot be treated by strip theory, then the present
method is no longer usable.

Center-of-6ravity position.- Although the influence of different

center-of-gravity positions was investigated for only two plan forms

(wings 445 and 400), it appears that, in cases for which the local centers

of gravity are located close to the local aerodynamic centers, linearized

flow theory should be employed only with great caution. This limitation

is not peculiar to the present method. It would apply to any flutter cal-

culation for which the aerodynamic loadings are obtained from linear

theory.

At subsonic speeds, neither the swept nor the unswept wings demon-

strate any appreciable sensitivity of V/VR to center-of-gravity posi-

tion. This result would be expected since at subsonic speeds local aero-

dynamic centers are at or near the quarter-chord position and are not in

proximity to the local centers of gravity.

CONCLUDING

A method has been developed for calculating flutter characteristics

of finite-span swept or unswept wings at subsonic and supersonic speeds.

" The method is basically a Rayleigh type analysis and is illustrated herein

with uncoupled vibration modes although coupled modes can be used. The

aerodynamic loadings are based on distributions of section lift-curve

slope and local aerodynamic centers calculated from three-dimensional

steady-flow theory. These distributions are used in conjunction with

the "effective" angle-of-attack distribution resulting from each of the

assumed vibration modes in order to obtain values of section llft and

pitching moment. Circulation functions modified on the basis of loadings

for two-dimensional airfoils oscillating in a compressible flow are

employed to account for the effects of oscillatory motion on the magni-

tudes and phase angles of the lift and moment vectors.

Calculation of subsonic and supersonic flutter characteristics for

12 wings of varying sweep angle, aspect ratio, taper ratio, and center-

of-gravity position and comparison of the results with experimental

flutter data indicate that the present method gives generally good flutter

results for a wide variety of wings. The method is, however, subject to

the following limitations:

(i) It is probably not applicable at high values of reduced frequency,

although good results are shown for values of reduced frequency up to

about 0.2.
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(2) It cannot be used at free-streamMach numbers in the immediate
vicinity of 1.O nor in the immediate vicinity where the Machnumbercom-
ponent normal to the leading edge is 1.0. However, flutter speeds and
frequencies maybe interpolated through these regions.

(3) The use of a strip-theory approach and the absence of camber
flexibility preclude treatment of wings with low aspect ratio and low
taper ratio (e.g., delta wings). Goodresults have been obtained, how-
ever, for a _5° swept wing with a panel aspect ratio of 0.91.

(4) Caution must be used whenapplying the method to wings for which
the local aerodynamic centers are close to the local centers of gravity.

Langley Aeronautical Laboratory,
National Advisory Committeefor Aeronautics,

Langley Field, Va., November26, 1957-
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APPENDIX A

DERIVATION OF THE FLUTTER EQUATIONS AND FLUTTER DETERMINANT

Flutter Equations

Basic assumptions.- The dynamical equations used in the present
method are essentially the same as those derived in reference 22, except

for changes in the expressions for lift P, pitching-moment M_, and

circulation functions F and G. The general assumptions appertaining

to the method of reference 22 thus apply herein also. Briefly, the

assumptions made with regard to the equations of motion are as follows:

(1) The elastic axis of the wing is approximately straight and

the oscillatory motlonmay be represented by a combination of the

uncoupled bending and twisting vibration modes of the wing with respect

to this elastic axis.

(2) The wing root is treated as though it were clamped along a

line normal to the elastic axis and passing through the intersection

of the elastic axis and the root chord.

(3) The analysis is based on geometric, structural, and aerodynamic

quantities associated with sections normal to the elastic axis. These

assumptions are discussed in detail in reference 22.

A_plication of La6ran6e's equations.- The dynamical equations

result from the application of Lagrange's equations of motion to the

flutter problem. For simplicity, the flutter equations are derived

herein for the case of one bending mode and one torsion mode.

Generalization to an arbitrary number of modes is easily accomplished

in the flutter determinant as will be illustrated. (The notation of

of ref. 22 has been followed where possible.) In the present method

the appropriate expressions for kinetic energy

•T = _h m h(y ') dy' + __ i=_fe (y,)]2_y,+

(AI)
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potential energy

i. 2 2/oZU=2-_ h _

and virtual work

i__282 _ z i_feedy,
mfh2dy' + 2 c_- _0

8w = QhSh + QeSe

(A2)

are the same as those of reference 22.

in the form

(A3)

The generalized forces are left

and

Qh = /0_( P - ma_n2 ghfhhlfhdY'-_---

Qe = M_ - _- f fedY '

Substituting these expressions into Lagrange's equations

(A4)

(AS)

d__) _T 3U

and

and assuming harmonic oscillations

(A6)

(A7)

h = [fh(y')]h= __fh(y')]hoei_t
(A8)
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and

e= [fe(y')le = [fe(Y')_eoei_t (A9)

lead to the equations of flutter

and

I IIb2 '1L l+ ( r_2 _ 4
br/O Z l(b-_-r)3X_fhfedyh | r [_2 _ + Ig_)- 1I/O -_(b_)f_ e- /0 M_fedY' = 0

(An)

In the calculations of the present report, uncoupled beam bending and

torsional mode shapes h i and mj are used for the flutter deflection

functions fh and fe" The introduction of uncoupled modes into the

flutter equations is discussed in detail in references 22 and 34.

(,_3.0)

Expressions for the elements of the flutter determinant resulting

from equations of the type (A10) and (All) are given in the following

section both for the case of an arbitrary number of vibration modes

and for the case of one torsion and two bending vibration modes as used

in the present analysis.

The Flutter Determinant

tions in the two unknowns h

Inserting equations (6) and (7) into equations (A10) and (All)

and using equations (A8), (Ag), and (Sb) yield two homogeneous equa-

and e, which may be written in the

form

Ak + B_ = 0 L

Oh + E_ 0

and for a nontrivial solution to exist,

(A12)

(A13)
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Now if

elements of the flutter determinant (AI3) will become matrices

u bending modes and v torsion modes are employed, the

Aij,

Bij , Dij , and Eij , such that

Aij = 0

Bij

Dij Eij

(A14)

The solution of equation (A14) gives the conditions of flutter

(flutter speed and frequency). The procedure for solving this determi-

nant is given at the end of this appendix. Expressions for typical

elements in the matrices Aij , Bij, Dij , and Eij are as follows:

2 SoI i

i_ B2hi2dq _ If0 B2hi2d_ +

fO I br tan Aea _fol dhi
B _ hid _ +l C C l Bhi 2d_ + Clc_,n d_

knr c_,n

br tan AeaF 1 B2 dh i hid_ (i = i, 2, 5, . u)
Joknr

fO I 1 CAij = -I B2hihjd_ + i _ knr fO I C lc_,nBhihjd_ +

b r tan Aea C

knr2
f01 Clm, nB dhjd_-hid_ + i

br tan Aea--I 'I

Joknr

.

I, 2, 5,
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fO brZ C fO 11 x_ B3hi_jd_ +
Bij = -br_ --_- _ kar 2 CZ_,nBhi_jd_

+

+ acn - a)himjd q + brZfo I B3_hi"_jd_

i br_Fl
_JO B_Ic_J d_ br2tan Aea C f01 _m,n \ _ + -

br2tan Aeaf01 B_ d_j_r d-Vhld_ (_ = i, 2, 3,i, 2, 3, .u)

_01fO I x_ B3hjmidq + brZ BSahj_id _ _Dij = -brZ -_-

brZ C i

i ._ k-nrfo CZc_nB2(a - acn)hj_id_ -

br2tan Aea C f01 BR(a _ aCn) dhj

br2tan Aea f01 dhji B3a -- mid_
knr d_ (_ = i, 2, 3,i, 2, 3,



30 NACARML57L10

I 2(l SoIr 2Eli = . + igal) - br2_ -_- B4c_i2d_ _

br_ _ _r _f01 CZ_,nB2(a - aCn)_i2d_ - br2Z f01 B4(8+ a21mi2d _ -

br2Z C f01 ICz a1i _ k_ C_m, nB3 _,n + aCn - (a- aCn) mi2d_ +

knr \ 2_ + acn

br3tan Aea k_fol _CZm_n a1C. B3 acn (a- aCn) d_i_,n \ 2_ + - d-_- _id_ +

br3tan Aeaf01 Bs__C_,n nl d_
knr2 \2-_- + ac _ _id_ +

br3tan AeaFl a_ dmi
i B4(8+ _-_id_ (i = i, 2, 3, • v)

knr _ 0

Eij = (a - aCn)mimjd _ - br2Z2J01
B2C

_n

i
br 2

C i a) (a aCn) mi_jd qk_rf 0 C, BS_-_ acn_,n \2_ + - - +

(equation continued on page 71)
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br2,f,lB3([.._"°n-"-i_d',-
I "-_ J0 \ 2_ +

©f°',, d_C- B5/C_a'tn ac n - (a - aen)_-_-'__idl] +
_n \e_ +

_2" _o _2_ + _ _id_
+

knr d_
(_ = i, 2, 5, v_

i, 2, 5, •

In the special case of three degrees of freedom (first and second

bending and first torsion modes) used throughout the present investiga-

tion, the flutter determinant (eq. (AI4)) becomes

AII AI2 BII

A21 A22 B21

DII DI2 Ell

-- o (A15)

The elements of this determinant can be conveniently expressed in the

forms

Ia G _r2> alk-_ F k-_lAll = i + a2 _rr + a3 + I - a2 _ + a 3 - RIZ

(b -- k--_r2) i_nr F k_---_)
AI2 = i + b2 G + b3 F + _ b2 _ + b3

knr
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__q_
B11 = Cl + c2 + c3 F + i - c2 _rr + c3 _r 2

G _ fd4 _ d2 FA21 : dI + d2 _ + d3 + i\knr _ + d 3

B21 = fl + f2 + f3 F + i f2 _ + f3

Ig G _72) glk--_ F _-_ 1Dn -- i + g2_rr+ g3 + i - g2_ + g3

DI2 (hl h2@ h3_ -_) ilk--_ h2@ h3 1
= + + + - +

knr

(m m_2.1 C@ F+ 1
= __ __ __Q._ _ R3ZG + m3 F

Ell 1 + nt2 kn r _-_ + + i - m 2 knr m3 knr2k_r

where

b_ brO (_)_C = F + iG knr = _ = v cos Aea Z = (I + ig)

and

= -_ _@a I -- @- a2=_@
_Obr 2
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a3 br tan Aea Q a4 = br tan Aea Q

bI = -Z (_

b5 = br tan Aea b4 = br tan Aea <_

Cl = _ O + br_ @

-brZ
c2 = --W-- (_

brZ
c3 = -_- @ + br2tan Aea @ c4 = br_ @ - br2tan Aea Q

dl= -Z Q

br tan Aea Q
d3= d4 = br tan Aea Q

-'d-,el- 2
xPb r

= br tan Aea
e3 e4 = br tan Aea (_

-_ _+br_ _
fl = _p-F_r

br_ br2tan Aea

-br Z
f2 = ---W-- (_

fh = br_ @/- br2tan Aea _

gl = xpb r
Q + brZ @

brZ
g2=-_ - @
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-br2tan Aea Q
g3 = g4 = -br2tan Aea Q

-Z _+brZ _
hl = _-_ r

br_h2 = -_--

h 3 = -br 2tan_ Aea h4 = -br2tan A_a

-Z 0-br2Zml= _

-br2Z br3tan
m 3 = _ O - _ Aea O m4 = br2Z O + br3tan Aea

3tan Am9 = br ea

Rl= -! <___>2
_Pbr 2 2

R2 _- -! _
_Pbr 2

R3 "Z

and the circled numbers represent the following integrals:

Q = f01 mhl2dn (_= f01 mh22d_

Q : foI_%12d_ I

f01= C Z Bhl2dl]
c_,n

(_= f01 C_(z,nBh22d_]
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Q f01 dhl= C -- hld _Zc_,nB d_ fO I dh2= C_,nB d_- h2d_

fO IQ= B2 dhl hld_ :fo__ _ h_

Q = foIB_lh2_

© fol= C _m, nB_h2d_

fO I dhlQ= C B -- h2d n
Zm, n d_

IO dhl® : B2d-C_d_

fO I dh2= C _ B hld _
c_n

_= fO I B2 dh2d_--hld_

: foI _a._,_h2,_

1 I= CI Bh2_dB
c_jn

I C B21 CZ_'n

Q = fO le_,n \2.

ac n - alhlad_

+

ac n - a)h2_:l_ 1
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Q = f01 B3ahl_d_ d = fO I B3ah2_d_

= B2hlad_ d = fO I B2h2cLd_

.= fo,° ,,_fc,_,_Z_,n \ 2:_ + L_, n \ 2_

fO 1Q = B3 a d__ hld_
dn fO d__= I B3a _ h2d_

OreI= C B2 fa - aCn) hladh
Z_,n

l-- c_ B21_- _On)_2_
a,_n \

Q = fO I CZ_,nB2(a - (:_ dr'o1 B_(,,-= CZ_n

f01 dhlQ = B3a ad_
B3a dh2--ad_

dn

Q = f01 r_2mB2_2dh CZoo,nB2 (a - aCn) a,2dh
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ic n
Q = /o Z_,n _,-2,_ +

"°n- a)(,,-

= B3 _+ @ = fO C'Lo,,n B3 +

\

- a I la - ac \d_ c_d_ac n
n/dT1/

\2,_ + + /_ _

_d_ac _ad_

These integrals are easily evaluated numerically. Only about one-half

of these integrals contain CZ_,n or ac n. Hence, only these integrals

change with Mach number. For a given wing the remaining integrals may

be evaluted once for all. Note that the integrals are independent of

density p. The density appears only as a multiplying factor in al,

Cl' el_ fl' gl' hi' ml' RI' R23 and R3.

Solution of the Determinant

For a given wing at a given Mach number the three-by-three flutter

determinant (eq. (AI5)) was solved for Z on an electronic digital

computer for various values of the parameter knr (and associated values
V n

of F and G). This evaluation of Z yielded values of and g
br_k

V n
corresponding to the various k values. A plot of g against

nr bra_
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then gave the value of knr and Vn for which g = O. These values
br_

br_

knr = Vn

and

define a flutter point. Then the flutter speed V is

V Vn br_

brm _ cos Aea

and the flutter frequency _ is

V n

_ = _r x b-'r'_ x _



:. - .. . :

. w

NACA EM LSTL10 .... 39

APPENDIX B

PROCEDURE FOR MAKING FLUTI_R CALCULATIONS

The following procedure was used in making the calculations presented

here in.

Summary of Required Information

First, a summary sheet is set up similar to that shown in table II.

The entries on this sheet represent all the information necessary for the

evaluation of integrals _ to _, coefficients aI to ms, and RI,

R2, and R3 listed in appendix A. These coefficients together with the

circulation functions F and G (calculation of which is discussed at

the end of this appendix) permit evaluation of the determinant ele-

ments All to Ell and, hence, solution of the flutter determinant as

described in appendix A.

Columns (I) to (5) of the summary sheet contain wing mass and elastic

parameters which, in the present case, were determined experimentally.

All of the experimental flutter data shown herein were obtained with the

wings mounted on a fuselage. (See refs. 30 to 34.) The calculations

were therefore made considering the wings to be cantilevered from the

side of the fuselage which was assumed fixed. The quantities _, -- ,

value s.

and _ listed at the top of the summary sheet are also measured

b
Column (6) contains values of B = --, the nondimensionalized

br

semichord measured perpendicular to the elastic axis. The nondimension-

alizing value br is the semichord b at station _ = 0.75. Values

of b may be obtained from the following equations:

b = _TE - _LE (B1)

s (K1 + K2)+ (K1 _ K2)a
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where

_LE = _ tan ALE (Be)

4
_TE = + _ tan ATE (B3)

Ap(1+

s = _ cos Aea

Kl=

K_

cos(ALE-Aea)

cos ALE

cos(Aea- ATE)

cos ATE

(B4)

tan ALE = tan Ac/4 +
ll-k

AI+%

tan ATE = tan ALE
41-h

Al+h

(_5)

The geometrical quantities appearing in these equations are shown in fig-

ure 56. Note that in equation (B3) the values of aspect ratio Ap and

taper ratio hp to be used are those obtained by considering the side of

the fuselage to be a reflection plane. In equations (BS) it is immaterial

whether A and k are obtained by considering the reflection plane to be

at the side of the fuselage or at the fuselage center line.

Columns (7) to (12) of the summary sheet (table II) are the ampli-

tudes and slopes of the uncoupled vibration mode shapes. These mode

shapes may be calculated for the particular wing by any of the methods

given in references 56 and 37. However, since flutter speed is not highly

7
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sensitive to slight changes in mode shape, the mode shapes for a uniform

cantilever beam may be used if aspect ratio and taper ratio are not too

small. All calculations in the present report were made by using the

first torsion and first and second bending mode shapes for a uniform canti-

lever beam as given in table III and figure 37. (Equations governing har-

monic bending or torsional oscillations of a uniform cantilever beam are

derived in ref. 37.) Table III contains all combinations of these mode

shapes which are required for the calculation of integrals _ to O"

Also presented in table III are the integrals of these mode-shape com-

binations which are useful in evaluating the integrals for untapered

wings.

Columns (15) and (14) of table II represent the distributions of

static aerodynamic parameters at a given Mach number.

Calculation of Static Aerodynamic Parameters CZm, n and ac n

The values of local lift-curve slope CZ_,n are obtained for sec-

tions normal to the elastic axis by applying simple sweep theory to CZ_

values for stresmwise sections. Thus,

CZ_

CZ_' n - cos Aea (B6)

The use of simple sweep theory together with values of CI_ for stream-

wise sections results in CZ_,n values different from those obtained by

direct integration of pressures over sections normal to the elastic axis.

However, the resulting discrepancies are negligibly small except near the

wing root where deflection amplitudes are small. (See fig. 27(e).) The

use of simple sweep theory should thus cause negligible errors in the

values of the integrals _ to Q . The local aerodynamic centers ac n

in units of semichord b and measured perpendicular to the elastic axis

are found from
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acn =

(B7)

Distributions of Cl_,n and acn for all the wings calculated are shown
in figures 27 to 35. As indicated in figures 27(e) and (f) the values of

Cl_,n and acn used in the flutter calculations do not always lie on the
and acn distribution. The integrals Q to @curves of C_,n

(appendix A) are evaluated numerically by using values of mass, elastic,
and aerodynamic parameters at q = 0.05 to 0.95, in increments of O.lO.
The required values of C_,n and acn therefore are average values
over the m-intervals 0 to 0.10, O.lO to 0.20, • 0.90 to 1.O0. These
values do not coincide with the Cl_,n and acn distribution curves
near points of sharp change.

Subsonic free stream.- In the case of subsonic free-stream velocity,

the spanwise distribution of C_e is found by the method of reference 24.

For these subsonic loading calculations, the full wing is considered.

That is, the reflection plane is considered to be at the fuselage center

line, and the presence of the fuselage is neglected. The effect of the

fuselage on the actual loading is felt primarily near the wing root.

Since deflection amplitudes are small near the root, the overall effect

of the fuselage on the integrals --Q to @ should be negligible. Since

the loading distribution is computed for the full wing including fuselage

intercept and since the distribution only over the wing panel is required

in the flutter calculation, the full-wing distribution of C_ is plotted,

and values are read off at stations corresponding to N = 0.05, 0.15,

• 0.95 of the wing panel. (See fig. 38.) For subsonic free-stream

velocity, ac n = -0.5 is used throughout. This value corresponds to the

aerodynamic center at the quarter-chord of a section normal to the elastic

axis.

Supersonic free stream.- For supersonic free stream, the cases of

subsonic leading edge and supersonic leading edge are considered.
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(1) Subsonic leading edge: In the case of supersonic free-stream

velocity and subsonic leading edge, the spanwise distributions of CZa

and ac are found by the method of reference 29. For these calculations,

the wing is treated throughout as though the side of the fuselage is a

reflection plane. This assumption seems reasonable since in the linearized

theory of reference 25 the distribution of loading on the wing panel is

dominantly affected by Mach waves emanating from the wing-fuselage

juncture.

When the leading edge is subsonic and the trailing edge is super-

sonic, as in sketch l,

Mach line

1

Side of fuselage

Mach

2

Sketch 1

the expressions for streamwise CZ_ and ac take a very simple form

CZ_ = CZ_,I- E tJALE _LE

(B8)

_pf_
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(B9)

where E = E i is the complete elliptic integral of the

t

second kind. Expressions for _LE' _TE' and tan ALE are given by

equations (B2), (B3), and (BS). The numerical subscripts throughout

refer to the loading areas in the appropriate sketch. Note that for

this condition ac is a function only of wing geometry and that Mach

number affects CZ_ only through the function E. Equations (B8)

and (B9) contain no provision for accounting for the loss of loading

within the Mach cone from the tip leading edge. The procedure for

applying tip corrections is discussed subsequently.

When the leading edge and trailing edge are both subsonic, as in

sketch 2,

Mach line

Side of fuselage 2

Mach lines

Sketch 2
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the loadlngs indicated by equations (B8) and (B9) must be corrected to
account for the loss of loading behind the root trailing-edge Mach line.
For this condition

CZ_= Cz_,1 + 2DZ_,5

Cn_z = Cm_, 1 + 2Cm_, 5 (mo)

Cm_
ac = --

C_

where CZa,1 and Om_,l are obtained from equations (B8) and (B9), and

hC1a,3 = EK tanALE(_TE _LE)_M TE F ' 1 - --_-_d_
- tan2_

_Cm_'' = EK tan ALE<_TE- _LE)2 _M TE _F , 1 tan_d_

_LE

_TE - _LE

(Bii)

where K = K 1 is the complete elliptic integral of the

t

first kind, F , tan2Am_ is the incomplete elliptic integral of

the first kind, and

_M = 4 + _B (BI2)

Ap(l+
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= sin- I _I - to 2

1-

m

t O =
4

Ap(l+

(BI3)

Equations (BII) represent only the "symmetric" trailing-edge correction

discussed in reference 25. However, this quantity is considered suf-

ficiently accurate for present purposes. The integrals in equations (Bll)

are evaluated numerically.

For _ stations near the wing tip the loadings given by equa-

tions (B8), (Bg), or (BlO) must be corrected to account for the loss of

loading within the Mach cone from the tip leading edge. When the leading

edge is subsonic, as in sketch 3,

Si_de of fuselage

Mach

S

T

Sketch 3
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these corrections are madeas follows: First, the spanwise locations of
points P, S, and L (see sketch 3) are found from the equations

4
tan ALE + _ -

_p=
tan _E + _

: ( - a) sin Aea cos Aea_S _p + _TE _e _=_p
(BIg)

where

and

(_TE- _ea)n=np = (b)n=np(l- an=np)K2

nL= 1 - (lea-_LE)n=I sin Aea cos Aea
(Bi6)

where

(See fig. 36.) The more inboard (measured parallel to the elastic axis)

of the points S and L represents the N station at which the tip

effect first begins to be felt.

The load intensity on the wing rises from trailing edge to leading

edge and approaches infinity at the leading edge. Therefore, if _S < BL'

the loss of loading caused by the tip will begin at the trailing edge

where load intensity is relatively low and gradually extend forward into

a region of high load intensity as the tip is approached. The loss of

loading outboard of _S will thus produce a curve of C_,n as a func-

tion of _ which has negative curvature as well as negative slope. (See

fig. 39(a).) Now the static aerodynamic loading parameters are intro-

duced into the flutter equations through strip theory which implies that
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the loading has a quasi-two-dimensional character. For a swept wing an
exact stripwise evaluation of loading near the tip would therefore have
questionable significance since neither the wing plan form nor the pres-
sure distribution is quasi-two-dimensional in that region. In view also
of the difficulty in performing an exact stripwise integration of loading
near the tip, a reasonable fairing of the C_,n curve is considered
adequate, even though this fairing occurs at spanwise locations where
wing deflection is greatest. For the case of _S < _L (fig. 39(a)),
the approximate curve used is geometrically derived from that obtained
by streamwise integration of loading in the tip region. The geometrical
derivation consists of applying a constant stretching factor to the curve
obtained by streamwise integration of the tip loading in order to fit
this curve to the knownloading at _ = _S" The appropriate equations
for this streamwise calculation are equations (6), (15), and (26b) of
reference 25. No reflections of Mach lines from plan-form edges are con-
sidered. For wing 445, flutter speed determined by using this type of
fairing and that obtained by using exact stripwise integration of tip
loading differed by only 0.6 percent.

If hS = _L' the curve of C_,n has a sharp discontinuity at
= _S = hL" (See fig. 39(b).) In this case an accurate representation

of the loading in the tip region can be obtained with the aid of figure 7
of reference 25. This figure gives the loss of lift across the tip Mach
line. A straight line is used, as in figure 39(b), to fair the C_,n
curve to zero at _T" The value of hT is given by

: i + -  ea) :lsin%a cos%a ( 17)

If _S > _L' the region of high load intensity near the leading edge

is lost first, so that the curve of C_m,n against _ has a steep nega-

tive slope just outboard of _L but has also a positive curvature (as in

fig. 39(c)). In this case a straight line is used to fair the CZ_,n curve

between _L and _ = i. In no case is any loading outboard of h = i

used in the flutter calculation.

In general, no tip correction was applied to acn since such cor-

rections would occur in only a small region. For wing 430, however, the

point KS was so far inboard that it was considered necessary to apply

a tip correction to acn. (See figs. 28(d) and (e).) This correction
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was obtained in the same manner as the correction for C_,n. That is,

the correction was determined from streamwise integration of lift and

pitching moment from which ac and hence acn were found.

(2) Supersonic leading edge: when the leading edge is supersonic,

as in sketch 4,

Side of fuselage

Mach lines

Sketch 4

the spanwise distributions of Czm and ac are found by the method of

reference 26. Again the wing is treated as though the side of the fuse-

lage is a reflection plane. Values of CZm, n and ac n are found from

CZ_ and ac by applying simple sweep theory as described previously.

The procedure for finding CZ_ and ac is as follows: First, find the

spanwise locations of points P, O, and Q (see sketch 4) by using the

equations:



90 ' ' NACA RM L57LIO

qp=

4
tan ALE +

tan _rE + _
(BI8)

_0 =
tan ALE +

2_
(B19)

4 1

qQ- Ap(l + kp) _ - tan ATE

(B20)

If point 0 lies on the wing, then for 0 _ q _ _p,

CZ_ _2, tan2ALE(_TE _LE) M1- _LE) +

(B21)

and

Cm_= ' _MI -

_2_ tan21_E(_TE- _LE)2L.

_LE

_TE - _LE
c_ (_22)

For hP < _ < NO'

4C,_ _2 tan2ALE (,TE 'LE) 'M1 - 'LE) + f'M2 /_Cp'--I hd' 'TE (_CP'_5 ld_]= - - _Mz \%,_/ + _M2 \%,al J
(B23)

and

Cm_ _82 _ tan2ALE (,TE . ,LE)2. L d'M1 \CP ' 2D/ M2 _

(B2a)
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For

C_O " =

and

Cm_ =

For

no -__ --<_Q,

__ t_,_(_-_) _"_-

F

_Q<N= =<i,

+ _ + _ _TE %LE C_f 'MI d, <M 1 d - _
u _M 2

(B25)

(_)

Clc _ = I(_/_-,_,_(_=-_) _._-
+ (B27)

and

: _/,2_t_2_(_-_)2 _ -

where, as before,

_LE = N tan ALE

+ n tan ATE I

(_.8)

(B29)
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and

_M1 = _

_M 2 = tan ALE + _(1 - _)

(_3o)

Also,

+

lqp,2 'iC' = / _i cos_l _ - T

\cp,_oj_ k_- tanA_

\c_,=) \c_,=)+ \c_,=/- 1

(BSI)

where

R = 2 tan2ALE _ 1

IB2

S : (R - 1)tan2ALE

T = tan ALE + (2_ + tan ALE)(1 - _)

(B32)

If point 0 lies behind the trailing edge, then hp > hQ, and C_

and Cm_ are obtained as follows:

For 0 =< h =< hQ, CZ_ and C,,_............. il.....bY equations (B21) and (B22);

for _Q =< _ =< _p,

¢



NACA RM L57LI0 ...... 53

4
(B33)

Cn_ = $ × ! (B34)

2 _ tan2ALE 2

For _p _ _ =_ i, C_c_ and Cnk_ are given by equations (B27) and (B28).

All of the integrals in the foregoing expressions for CZ_ and Cm_

are evaluated numerically.

It should be noted that for the case of supersonic leading edge if

_S < _L' no separate tip correction is necessary. Approximately correct

values of C_,n and ac n in the tip region (_ > _S) are obtained by

applying simple sweep theory to the values of CZ_ and ac resulting

from equations (B23) to (B28). Loadings of this type are shown in

figures 28(e) and 34(d). If _S > _L, then the C_,n curve is faired

with a straight line between NL and N = 1. (See fig. 39(c).) In this

latter case, equations (B23) to (B28) need not be evaluated.

Circulation Functions

As mentioned in the body of this paper, the circulation functions F

and G, which appear in the determinant elements listed in appendix A, are

obtained from aerodynamic coefficients given in reference 27 for two-

dimensional airfoils oscillating in compressible flow. (Similar coeffi-

cients for supersonic speeds only are also given in ref. 38.) These coef-

ficients _m, _z, m_, m z are defined in reference 27 so that

and

P = -2bpv2(hLE_Z + 8_c_)

M_= (2b)2pv2(hLEmz + emc_)

(B35)

(B36)
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in the notation of the present paper, where hLE is the value of trans-
lation deflection at the leading edge. Nowanother expression for lift
in the case of two-dlmensional compressible flow maybe obtained from
equation (6) by deleting the terms containing s and T. Thus,

P =-_pb2(v8 + h- baS)- CZm, nPVbC[ve + h+ bk-#_'n + acn - a1

where

and

i
aCn - 2

for M < i

4

CZ_, n

ac n = 0

for M > i

Expressions for the circulation functions in terms of the aerodynamic

coefficients of reference 29 may be obtained by equating expressions (B35)

and (B37). Equating the two expressions for P (eqs. (B35) and (B37)),

using

= i_8

h= i_h

= -a_e

= -(o2h
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for simple harmonic oscillation, and noting that

h _i + a)hip, = 2b

lead to

CZ_,nFCe- C_,nGCknr[h + e(C_+ ac n - _] = _knr2( h- ae)+ [h_ e(1 +a_ Iz' + 2ez _'

and

c_,_j_-+ ,t-_ +a_nL_ - all + CZ_,nGCe = -_8knr + [h - 8(1 + a)],z" + 28,_"

where

_= Zm(M, knr) = Z_' + i_m"

_z = Zz(M,knr) = Zz' + iZz"

Considering only the pitching oscillation, that is, putting

permits simplification to

h= O_

FC knrIC_ 'n a1 1 [2 a]
- + acn - Gc = Z_' - (i + a)_ z' - _knr 2

C _m, n

and

," 4
nr\2_ + acn - FC + GC - _c_" - (1 + a) z -C_,n
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or

(B38)FC=

and

GC: (B39)

C_a, n + knr 2 + ac n -

Analogous expressions for FC and GC could be obtained by equating

expressions for pitching moment M_ instead of lift P. It was indi-

cated previously in this report that use of the present method for pre-

dicting flutter characteristics should probably be restricted to cases

for which knr is moderately small. Therefore, the knr 3 term in equa-

tion (B}9) may be dropped. Furthermore, the factor ,n + acn -

does not vary greatly with Mach number except in the immediate vicinity

of M = i, and this vicinity is inaccessible to the present method.

Therefore, since this factor is always multiplied by knr or knr 2,

only small error will be introduced into the circulation functions by

taking throughout (C_,n _ i+ ac n - = _, which is the incompressible

flow value with a = O. The value a = 0 implies torsional oscillation

about the midchord. Equations (B38) and (B39) then reduce to

knr 2

FC = (2Z_'- Zz')+ _(2Z_"- lz") - _ 2

C0NFIDENT IAL
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ac = (ml)

These expressions for F C and GC are independent of wing parameters

and depend only on Mach number M and reduced frequency knr. As men-

tioned in the body of this report, when the two-dimensional circulation

functions Fc and Gc are used in flutter calculations for three-

dimensional wings, the functions are defined by the Mach number normal

to the leading edge. Thus Cc becomes

Cc= CC(MLE,knr) = Fc(MLE,knr)+ iGc(MLE,knr)

A typical comparison of FC and G C calculated from equations (B40)

and (B41) with those obtained from equations (B38) and (B39) is shown in

figure 40. Values of FC and G C were obtained from equations (B38)

and (B59) for two positions of aerodynamic center: acn = 0 (the two-

dimensional supersonic value) and acn = -0.325261 (the value at the

station _ = 0.75 of wing 445 at M = 1.75). The results in both cases

closely approximate the results from equations (B40) and (B41). The dif-

ferences between the three sets of FC and GC curves shown in figure 40

would result in less than 1 percent difference in the calculated flutter

speed for wing 445. Since calculated flutter speed is only moderately

sensitive to small changes in the circulation function values (see fig. 3),

the circulation functions used throughout this investigation were cal-

culated from the simplified equations (B40) and (B41).

Some typical curves of FC and Gc are shown in figure 41, and

( ) ( )the combinations 2Z_ - Zz' and 2Z_" - _z used in equations (B40)

and (BAI) are plotted in figures 42 and 43, respectively.
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//_nd vortex (strength associated with C_a,n = 2n)

_ elastlc axis

\ _- point of application of

\ downwash boundary cond_tion

d -- a = _ - a
_mldchord

(a) Relations used in references 22 and 33-

bound vortex (strength proportional to C_a,n)

d - a : -- + ac n - a
2_

\

!a(

-- elastic axis

_---polnt of application of

ash boundary condition

d •

_midchord

(b) Relations used in present method.

Figure 1.- Geometric relations associated with the application of the

downwash boundary condition.
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Figure 6.- Variation of flutter speed with Mach number for wing 245.

For calculated points P = 0.003900 slugs/cu ft.
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Figure 10.- Variation of flutter speed with Mach number for wing 400.

For calculated points p = 0.002378 slugs/cu ft.
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Figure 13.- Variation of flutter speed with Mach number for wing 4001.

For calculated points p = 0.002378 slugs/cu ft.
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Figure 14.- Variation of flutter speed with Mach number for wing 7001.

For calculated points D = 0.005500 slugs/cu ft.
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Figure 27.- Distributions of static aerodynamic parameters for wing 445.

Symbols indicate values of CZ_, n used in the flutter calculations.
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Symbols indicate values of C_,n used in the flutter calculations.
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Symbols indicate values of CZ_,n used in the flutter calculations.
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Figure 31.- Distributions of static aerodynamic parameters for wing 245.

Symbols indicate values of C_,n used in the flutter calculations.
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